Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunotherapy ; 16(3): 143-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126157

RESUMO

Aim: A novel CD19xCD3xCD28 trispecific antibody with a tandem single-chain variable fragments (scFv) structure was developed for the treatment of B-cell malignancies. Methods: The trispecific antibody in inducing tumor-directed T-cell activation and cytotoxicity was evaluated in vitro and in vivo and compared with its bispecific counterpart BiTE-CD19xCD3 lacking a CD28-targeting domain. Results: The trispecific antibody with a co-stimulatory domain exhibited augmented T-cell activation and memory T-cell differentiation capability and it induced faster tumor cell lysis than the bispecific antibody. RNAseq analysis revealed that the trispecific antibody modulates CD3/TCR complex-derived signal and upregulates antiapoptotic factors to influence the survival of T cells. Conclusion: By CD3/CD28 co-engagement, the trispecific antibody demonstrated its advantages in T-cell immunity and potential use as a more powerful and long-lasting T-cell engager.


T-cell based immunotherapies are a type of treatment that stimulates the body's own immune system to fight cancer. They have grown in popularity in recent years and have had impressive results in cancer treatment. One type of T-cell immunotherapy is a T-cell engager antibody. This is a type of molecule that redirects the body's immune cells to recognise and kill cancer cells. In this study, we developed a new type of T-cell engager antibody to treat two types of blood and bone marrow cancer. The antibody works by joining immune cells and cancer cells close together, to help activate the immune cells for cancer killing. This new type of T-cell engager antibody worked better than previous versions. It helped the immune cells survive longer and kill cancer more effectively. This means the new antibody might be better at treating people who have these types of cancers, but more testing in humans needs to be done.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Antígenos CD28 , Complexo CD3 , Linfócitos T , Anticorpos Biespecíficos/uso terapêutico , Ativação Linfocitária
2.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038204

RESUMO

We have studied the epitaxial growth of Si thin films on the Cd(0001) surface using low-temperature scanning tunneling microscopy. When deposited at low temperatures (100 K), Si atoms form dendritic islands with triangular shapes, indicating the existence of anisotropic edge diffusion in the process of Si film growth. After annealing to elevated temperatures, the triangular dendritic Si islands become hexagonal compact islands. Moreover, the 2D Si islands located on two different substrate terraces exhibit different heights due to the influence of quantum-well states in Cd(0001) films. Based on high-resolution scanning tunneling microscopy images, it is observed that the first, second, and third Si layers show the pseudomorphic 1 × 1 structure. In particular, the first and second layer islands reveal the opposite triangles, indicating the hexagonal close-packed stacking of Si atoms. These results provide important information for the growth of pristine Si films on metal substrates and the understanding of Si-metal interaction.

3.
Acta Pharm Sin B ; 11(2): 476-487, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643825

RESUMO

Dendritic cell-based cancer vaccines (DC vaccines) have been proved efficient and safe in immunotherapy of various cancers, including melanoma, ovarian and prostate cancer. However, the clinical responses were not always satisfied. Here we proposed a novel strategy to prepare DC vaccines. In the present study, a fusion protein SNU containing a secretin-penetratin (SecPen) peptide, NY-ESO-1 and ubiquitin was designed and expressed. To establish the DC vaccine (DC-SNU), the mouse bone marrow-derived DCs (BMDCs) were isolated, pulsed with SNU and maturated with cytokine cocktail. Then peripheral blood mononuclear cells (PBMCs) from C57BL/6 mice inoculated intraperitoneally with DC-SNU were separated and cocultured with MC38/MC38 NY-ESO-1 tumor cells or DC vaccines. The results show that SNU was successfully expressed. This strategy made NY-ESO-1 entering cytoplasm of BMDCs more efficiently and degraded mainly by proteasome. As we expected, mature BMDCs expressed higher CD40, CD80 and CD86 than immature BMDCs. Thus, the PBMCs released more IFN-γ and TNF-α when stimulated with DC-SNU in vitro again. What's more, the PBMCs induced stronger and specific cytotoxicity towards MC38 NY-ESO-1 tumor cells. Given the above, it demonstrated that DC-SNU loaded with SecPen and ubiquitin-fused NY-ESO-1 could elicit stronger and specific T cell immune responses. This strategy can be used as a platform for DC vaccine preparation and applied to various cancers treatment.

4.
ACS Appl Mater Interfaces ; 12(37): 41381-41389, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32812735

RESUMO

GeSe was theoretically predicted to have thermoelectric (TE) performance as high as SnSe. However, the relatively high TE performance was not achieved experimentally in doped GeSe samples with an original orthorhombic structure but observed in Ag(Sb,Bi)(Se,Te)2 alloyed samples that crystalize in either a rhombohedral or cubic structure. Herein, to clarify the crystal structure-dependent properties, the electrical and thermal transport properties of GeSe1-xTex (0 ≤ x ≤ 0.5), where orthorhombic, hexagonal, and rhombohedral phases are stable at room temperature for different Te content, have been studied, without any intentional manipulation on carrier concentration. It is found that the three phases show intrinsically different hole concentrations: ∼1016 cm-3 for the orthorhombic phase but as high as 1021 cm-3 for the hexagonal and rhombohedral phases. Ge-rich status in the orthorhombic phase and Ge-poor status in hexagonal and rhombohedral phases may be responsible for the huge difference in hole concentrations. The rhombohedral phase shows a much higher Seebeck coefficient than the hexagonal phase with similar hole concentration, indicating that the profile of valance band maximum for the rhombohedral structure is more favorable for high TE performance than the hexagonal phase in GeSe1-xTex. The highest zT of 0.69 has been obtained in GeSe0.55Te0.45 at 778 K, at which temperature the rhombohedral phase has already transformed to a cubic phase; however, a zT value of 1.74 at 628 K is predicted by the quality factor analysis for rhombohedral GeSe0.55Te0.45 if optimum hole concentration can be achieved.

5.
ACS Appl Mater Interfaces ; 12(7): 8446-8455, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986003

RESUMO

This work systematically investigated the thermoelectric properties of p-type Na and M (M = K, Li, Ag) codoped polycrystalline SnSe. It is found that the electrical properties of polycrystalline SnSe can be improved significantly for (Na, Ag) codoped samples, contributed by the enhanced carrier concentration. Specifically, a carrier concentration of 6.23 × 1019 cm-3 was obtained in Sn0.98Na0.016Ag0.004Se sample at 335 K, an increase of 18% compared with that of the Na single-doped sample (5.22 × 1019 cm-3). The power factor reached ∼0.73 mW m-1 K-2 for the Sn0.98Na0.016Ag0.004Se sample at 785 K, enhanced by ∼26% compared with Na single-doped one. In addition, Sn-rich and Ag-rich particles/areas observed in the matrix of Sn0.98Na0.016Ag0.004Se contribute to the reduction of lattice thermal conductivity from 0.61 W m-1 K-1 for Sn0.98Ag0.02Se to 0.47 W m-1 K-1 at 785 K. The combination of simultaneously enhanced power factor and depressed thermal conductivity leads to a maximum ZT ≈ 1.2 at 785 K and a high average ZT ≈ 0.74 at 335-785 K for Sn0.98Na0.016Ag0.004Se, and generating a high theoretical conversion efficiency of ∼11%. These illuminating discoveries could provide routes to enhance the thermoelectric performance in p-type polycrystalline SnSe.

6.
Yi Chuan ; 38(4): 350-9, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27103458

RESUMO

Hepatitis B virus (HBV) is a dented double-stranded DNA virus. After infecting human hepatic cells, it forms cccDNA that replicates persistently and integrates randomly into the host's genome during the process of reserve transcription. On average, in each cell with chronic HBV infection, there are about 33 copies of cccDNA with a half of 35-57 days, which can be difficult to eradicate. A new strategy is to inhibit HBV transcription by using locked nucleic acid (LNA). Besides, cleaving HBV genome by targeted genome editing technologies could potentially cure patients. In this study, we explored new genome editing tools for HBV treatment. Based on LNA's ability to form triple helix by binding to duplex DNA, its stability towards nuclease and polymerase, and its sensitivity to single base mismatches, we designed LNA-modified oligonucleotides as DNA binding domain to effectively increase the specificity of target gene recognition. Meanwhile, by utilizing the small molecular weight and dimerization dependent activity of nuclease Fok I, we used Fok I recombinant dimer protein as DNA cleavage domain. Here, we established a method by chemical coupling of LNA-oligonucleotide with Fok I cleavage domain, and also validated the targeted cleavage of HBV genes with our new tools in vitro. These results provide new possibilities for future in vivo anti-virus gene therapy with high specificity and no integration risk.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/química , Vírus da Hepatite B/genética , Oligonucleotídeos/química , Sequência de Bases , Dados de Sequência Molecular
7.
Protein Expr Purif ; 92(2): 208-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24125754

RESUMO

As a member of zinc-containing medium-chain alcohol dehydrogenase family, formaldehyde dehydrogenase (FDH) can oxidize toxic formaldehyde to less active formate with NAD(+) as a cofactor and exists in both prokaryotes and eukaryotes. Most FDHs are well known to be glutathione-dependent in the catalysis of formaldehyde oxidation, but the enzyme from Pseudomonas putida is an exception, which is independent of glutathione. To identify novel glutathione-independent FDHs from other bacterial strains and facilitate the corresponding structural and enzymatic studies, high-level soluble expression and efficient purification of these enzymes need to be achieved. Here, we present molecular cloning, expression, and purification of the FDH from Pseudomonas aeruginosa, which is a Gram-negative pathogenic bacterium causing opportunistic human infection. The FDH of P. aeruginosa shows high sequence identity (87.97%) with that of P. putida. Our results indicated that coexpression with molecular chaperones GroES, GroEL, and Tig has significantly attenuated inclusion body formation and improved the solubility of the recombinant FDH in Escherichiacoli cells. A purification protocol including three chromatographic steps was also established to isolate the recombinant FDH to homogeneity with a yield of ∼3.2 mg from 1L of cell culture. The recombinant P. aeruginosa FDH was properly folded and biologically functional, as demonstrated by the mass spectrometric, crystallographic, and enzymatic characterizations of the purified proteins.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Artigo em Inglês | MEDLINE | ID: mdl-23989142

RESUMO

Formaldehyde dehydrogenase (FDH) is a member of the zinc-containing medium-chain alcohol dehydrogenase family which oxidizes toxic formaldehyde to formate using NAD(+) as an electron carrier. Three-dimensional structures have been reported for FDHs from several different species. Most FDHs are dependent on glutathione for catalysis, but the enzyme from Pseudomonas putida is an exception. In this structural communication, the recombinant production, crystallization and X-ray structure determination at 2.7 Šresolution of FDH from P. aeruginosa are described. Both the tetrameric assembly and the NAD(+)-binding mode of P. aeruginosa FDH are similar to those of P. putida FDH, which is in good agreement with the high sequence identity (87.97%) between these two proteins. Preliminary enzymatic kinetics studies of P. aeruginosa FDH also revealed a conserved glutathione-independent `ping-pong' mechanism of formaldehyde oxidization.


Assuntos
Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Formaldeído/química , NAD/química , Pseudomonas aeruginosa/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Escherichia coli/genética , Formaldeído/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , Oxirredução , Ligação Proteica , Multimerização Proteica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas putida/química , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
9.
J Biol Chem ; 281(18): 12580-6, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16407196

RESUMO

Dentatorubral-pallidoluysian atrophy (DRPLA) is a progressive neurodegenerative disease caused by polyglutamine expansion within the Atrophin-1 protein. To study the mechanism of this disease and to test potential therapeutic methods, we established Atro-118Q transgenic mice, which express in neurons a mutant human Atrophin-1 protein that contains an expanded stretch of 118 glutamines. Consistent with the results from previous studies on transgenic mice that expressed mutant Atrophin-1 with 65 glutamines, Atro-118Q mice exhibited several neurodegenerative phenotypes that are commonly seen in DRPLA patients, including ataxia, tremors, and other motor defects. Overexpression of wild-type human Atrophin-1 could not rescue the motor and survival defects in Atro-118Q mice, indicating that the mutant protein with polyglutamine expansion does not simply function in a dominant negative manner. Biochemical analysis of Atro-118Q mice revealed hypoacetylation of histone H3 in brain tissues and thus suggested that global gene repression is an underlying mechanism for neurodegeneration in this mouse model. We further show that intraperitoneal administration of sodium butyrate, a histone deacetylase inhibitor, ameliorated the histone acetylation defects, significantly improved motor performance, and extended the average life span of Atro-118Q mice. These results support the hypothesis that transcription deregulation plays an important role in the pathogenesis of polyglutamine expansion diseases and suggest that reversion of transcription repression with small molecules such as sodium butyrate is a feasible approach to treating DRPLA symptoms.


Assuntos
Butiratos/farmacologia , Histonas/química , Epilepsias Mioclônicas Progressivas/patologia , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/patologia , Acetilação , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Isobutiratos , Camundongos , Camundongos Transgênicos , Epilepsias Mioclônicas Progressivas/metabolismo , Peptídeos/química , Fenótipo
10.
Genesis ; 42(2): 86-90, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15880439

RESUMO

Fluorescent proteins provide a powerful means to track gene expression and cellular behaviors in the study of model organisms such as mice. Among the new generation of fluorescent protein markers, the monomeric red fluorescent protein mRFP1 is particularly attractive because of its rapid maturation and minimal interference with GFP and GFP-derived markers. Here we evaluate the utility of mRFP1 as a marker in transgenic mice. We show that high level and ubiquitous expression of mRFP1 does not affect mouse development, general physiology, or reproduction. mRFP1 expression can be readily detected with unaided eyes under daylight in transgenic mice on the albino background. The intensity of mRFP1 signals can be used to distinguish homozygous and heterozygous transgenic mice. Together, these features make mRFP1 an attractive marker for broad applications in transgenic research.


Assuntos
Proteínas Luminescentes/análise , Camundongos Transgênicos , Animais , Comportamento Animal , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Vetores Genéticos , Genótipo , Proteínas Luminescentes/genética , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...